

Single Board Computer
Rev. Stan Lewis

Overview - Single Board Computers

- Introduction
- What is an SBC?
- Examples
- How are they different from "other" architectures?
- Advantages and Uses

First a bit of introduction

- BS. Computer Science 1986
- Light years ago, in computer world
- Corporate Data Systems - "main frames"
- Area of Expertise
- Storage Management - hardware
- System Performance and Capacity Planning - statistics
- Usually in the "Operating Systems Group"
- Saw Evolution of IBM Systems beyond the 360 Architecture
- Each iteration underlying system became more complex especially in the basic instruction set

Introduction (cont.)

- Transitioned to ministry in 1995
- More attuned to desktop systems
- Later SBCs and microcontrollers
- SBC (Single Board Computers) and MCU (micro control units)
- hobby
- Computer Controlled Machines (first one in graduate school/seminary)
- 3d Printers
- Not an "expert" in SBCs
- Lastly, MUCH overlap as speeds and form-factors have evolved.

From the past

- Each iteration of IBM from 360, 370, to ESA
- CISC - Complex Instruction Set Computers
- Evolution of instruction set
- Features added - reduce downtime, increase capacity
- Somewhat pejorative - Big Iron name
- Systems became bigger - physically
- Systems became faster - more chips, more storage
- Key take away - "Complex"
- Pressure to make things smaller physically
- Moore's Law - transistors double every two years - observation

SBC Defined

Complicated because of Overlap with "All in Ones," tablets, etc.

- Fully functional computer on one board
- Meaning CPU, GPU, Storage, Peripherals, and other supporting hardware
- Obviously limits upgradeability
- Supports normal network interfaces such as ethernet, Wifi, Bluetooth

SBC Defined (cont.)

Major difference - RISC Architecture

- X86 (and beyond) processors are CISC
- CISC - Complex Instruction Set Computers
- Started by Intel in 1970s
- Basically, one instruction does more work under the covers
- Hardware intensive - more transistors, etc.
- SBC are typically RISC - Reduce Instruction Set Computers
- Started in 1980 - David Patterson \& John Hennessy
- Deal with "complexity" issues of CISC
- Basically, one instruction does one action
- Register-driven rather than memory driven

Examples

- Raspberry Pi (released in 2012)
- Clones and derivatives
- Designed to be more "open source"
- Science labs
- Now in the "wild" - robotics, automation (home \& industrial), hobbyists
- Different from Microcontrollers such as Arduino et. al.

SBC vs Microcontrollers

- SBCs and MCUs are similar in that they are RISC
- MCUs require additional supporting electronics beyond power
- Interface to sensors, motors, relays, etc.
- Often need driver chips
- MCU programs typically written into the actual hardware (eeprom)
- MCU programs typically more C++ like compiled into machine code

SBC vs Microcontrollers

- SBCs can run with displays, keyboards
- Often have USB and HDMI support - cross lines towards "desktops"
- Things rapidly get fuzzy
- MCU typically run their code directly
- SBC typically run their code on top of an Operating System - LINUX
- Code is often written in Python or others

How are they "different"?

- Already talked about some of this
- Different underlying architecture and organization
- More "open source" - even that is fuzzy
- Most phones, tablets, other smart devices use RISC technology
- Cost and complexity of CISC development continues to increase

Biggest Difference

- CISC
- Hardware focused
- Hard and complex to develop
- Cost prohibitive to change once the "die is cast"
- RISC
- Software focused
- Easier to develop
- Easier to change the program than the hardware!
- Development time on application side

Biggest Difference

- CISC
- Hardware focused
- Hard and complex to develop
- Cost prohibitive to change once the "die is cast"
- RISC
- Software focused
- Easier to develop
- Easier to change the program than the hardware!
- Development time on application side

Circle Back MVS, VM, TPF

- Three Major IBM Operating Systems in 80 s and 90 s
- Each One very good at what they did
- Airline - Used all three
- MVS - Commercial \& Business side - large amounts of data
- TPF - Airline Operations side - transaction oriented
- VM - Development side - safe \& stable work platform for other two
- PCs were beginning to show up

Not about one better or worse

- Right one for the job!
- Each One very good at what they did - still the case across the spectrum
- IoT - Internet of Things
- Home Automation \& Industrial Automation
- My favorite 3D printing.

Pros and Cons

- Gets hard here
- No clear winners
- Intel x86, AMD, and compatible processors are changing
- Intel i7 is both on the same chip
- Weight of Intel, Microsoft, and others
- Power consumption - SBC and RISC

3d Printing

- All three platforms - Desktop (x64), SBC (Raspberry Pi), Arduino
- Desktop - part design and prep
- SBC - handles the control/monitoring of the printer
- Arduino - fading out
- Less hardware centric - configure, compile, burn, test, repeat
- More software centric - configure and reboot
- Still great many use Arduino for 3d printing
- CNC Plasma table - Arduino-like

Other Uses

- NAS boxes - SBC and a USB hard drive
- Competes with "cloud" based
- Gaming Consoles - Retro Gaming
- Weather Stations
- IoT!
- Point of Sale and Kiosk
- Anything that requires "specialized functionality"

Blurred Lines...

- Both RISC and CISC hardware can accomplish same end use today
- Miniaturization packed more hardware on a chip inc. speed and memory
- Cost of hardware/performance has plummeted, eg SSD vs HDD, memory
- Core processing speed
- Programming language and environment advances
- Operating Systems - cross hardware

Specifically Raspberry Pi (rPi)...

- Run variety of OS especially Linux (other Unix derivatives)
- Linux (raspberry pi OS, and derivatives) ++
- Windows 10, Windows 10 IoT Core
- Run either mode
- Desktop (monitor, keyboard, mouse etc)
- Headless (no monitor, keyboard)
- Internet of Things -> Internet of Everything!

